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ABSTRACT

California Polytechnic State University, in
coordination with Stanford University, has
developed the CubeSat standard to provide
inexpensive and timely access to space for small
payloads.  These picosatellites, built mostly by
universities, are 10 centimeter cubes with a mass
of 1 kilogram.  Of the 40 or so participating
universities and private firms, more than 60% of
CubeSat developers reside in the United States.
Our goal is to make launching these satellites
easy and cost effective by coordinating launches
and providing a reliable deployment system.
This paper will discuss Cal Poly’s role in the
CubeSat program, and the characteristics of the
project which create practical, reliable, and cost-
effective launch opportunities.
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1 INTRODUCTION

The CubeSat Program is a collaborative effort
between California Polytechnic State University,
San Luis Obispo (Cal Poly) and the Space
Systems Development Laboratory (SSDL) at
Stanford University.  The objective of the
CubeSat Program is to provide a standard
platform for the design and launch of a new
class of picosatellites - CubeSats.1

The CubeSat Program is designed so that space
missions can be completed in two years or less
(the average collegiate lifetime of a graduate
student).  This accelerated schedule allows
students to be involved in the complete life
cycle of a mission.  Specifically,

• Mission and requirements planning
• Design, analysis, & testing
• Fabrication, assembly, & quality control
• System level testing
• Integration and launch
• Ground based satellite operations

A unique feature of the CubeSat Program is the
use of a standard deployment system.  Through
the Poly Picosatellite Orbital Deployer, or P-
POD, standardization is used to reduce mission
cost and accelerate development time.  Cal
Poly’s current roles are to maintain the CubeSat
Standard, coordinates launch opportunities, and
continue to develop and fly the P-POD.  This
framework allows universities and organizations
worldwide to develop and launch CubeSats
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without directly interfacing with launch
providers (LP).

2 THE DEPLOYMENT SYSTEM (P-POD)

Additional hardware, such as a deployment
system, usually only increases complexity.  For
CubeSats, however, addition of this hardware is
critical to mission success.

Figure 2-1: P-POD with door open.

2.1 Objectives
The functions of the P-POD are to protect the
launch vehicle (LV) and primary payload, to
provide a safe and reliable deployment system
for the CubeSats, and to maintain flexibility in
compatible LV options.

2.1.1 Protect Primary Payloads and the LV
Low cost missions usually imply high risk.
Therefore, it is imperative that the P-POD
minimize risk to the LV and primary payload.

The P-POD must maintain its own structural
integrity and offset any failures that CubeSats
may have during launch.  Encapsulation of
CubeSats within the P-POD, mechanically and
electrically isolates CubeSats from the rest of the
LV, reducing risk of damage due to

• Accidental activation of electronics
• Debris produced by structural damage
• Prematurely deployed antennas/booms

2.1.2 Protect CubeSats
Assuring the safety of the CubeSats is an
important but secondary objective of the P-
POD.  The P-POD should still provide a safe
environment for the CubeSats during launch,
and maintain a high level of reliability.  Also, the
P-POD should not introduce large spin rates to
the CubeSats during deployment.

The P-POD also serves as a storage bin
between integration and launch, protecting
CubeSats from hazardous environmental factors
such as dust, ESD, and damage due to
mishandling or good-intentioned “last minute
tuning” by engineers.2  Once integrated,
CubeSats may charge batteries and undergo
diagnostics through an access port, but will
otherwise remain in a dormant mode until being
deployed in space.

Figure 2-2: P-POD Access ports.

2.1.3 Provide LV Flexibility
Published secondary payload envelopes played a
large role in defining the P-POD’s size and
shape.  As a result, the P-POD is compatible
with a wide variety domestic and foreign LV.

Table 2-1: Some compatible launch vehicles.
Delta II3 Pegasus
Delta IV – SAM Taurus
Delta IV – ESPA4 Falcon I
Atlas V – ESPA4 Rockot     (Russian)
Space Shuttle Dnepr5     (Russian)
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Though the small size of the P-POD allows for
many interface possibilities, launch providers
(some Russian LP excluded) are not willing to
squeeze secondary payloads wherever they can
find extra room.  Therefore, only the most
conservative secondary payload envelopes were
considered viable options.

2.2 P-POD Design
The P-POD’s design is extremely simple, and
purposefully so.  It is an aluminum box with a
spring, a door, and a mechanism to open that
door.  CubeSats are stacked inside the P-POD
and constrained by a set of hard anodized,
teflon-impregnated rails.  These rails provide a
low-friction surface for the CubeSats to slide
against during deployment.

The P-POD’s only task is to open the door (at
the right time) and push CubeSats out.  The
philosophy of simplicity was adopted very early
on because the P-POD has to do its task
extremely well.  After all, the owners of a newly
disintegrated $90million mega-satellite probably
will not be very accepting of their loss due to a
secondary payload failure (even if the students
do learn a valuable lesson).

2.2.1 Modularity
The P-POD can hold a number of different
CubeSat configurations, totaling a length of
340.5mm (the length of three standard sized
CubeSats).  Double (227.0mm long), and triple
(340.5mm long) CubeSats can also be integrated
without modification to the P-POD.

Figure 2-3: CubeSat configurations.

2.2.2 Simplicity
Due to its simplicity, working on the P-POD is
a painful exercise in restraint for an
undergraduate engineering student.  However,
less time spent designing, means more time
spent testing.

Minimizing the number of mechanisms allows
those mechanisms to be designed carefully, and
parts to be chosen meticulously.  Furthermore,
reducing the number of mission critical
components, affords those components a larger
portion of the budget.  The P-POD has three
such mechanisms.

2.2.3 Critical Components
The Starsys Qwknut 3k is used to release the P-
POD door.  It is a non-pyrotechnic bolt release
system6 with redundant electric circuitry (no
electronic components).  It is very reliable, and
as a result, more expensive than the cost of
every other P-POD component combined.

Figure 2-4: Starsys Qwknut 3k.

The Qwknut 3k was chosen over less expensive,
or student-designed, components to offset
concerns about the P-POD’s reliability and
limited flight heritage.  In addition, the Qwknut
is user resettable, which allowed us to perform
deployment tests to our hearts’ content.

Two torsion springs are used to open the door
of the P-POD.  These springs provide enough
torque to quickly move the door out of the
CubeSats’ path.  The design allows positive
mating of the door and release mechanism to
reduce stress.  Appropriate geometry and
lubrication are used to prevent binding of the
door.
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Figure 2-5: Torsion spring for opening door.

An internal compression spring and plate
assembly ejects the CubeSats from the P-POD.
There is no direct contact between the CubeSats
and the spring; only the plate guides the
CubeSats throughout the length of the P-POD.
The spring is customized based on the required
ejection parameters for a given mission.  The
Dnepr 04-05 mission requires CubeSats to be
clear of the P-POD within one second of
receiving a deployment signal, but limits their
velocity to 2 m/s relative to the upper stage.5

Figure 2-6: P-POD main compression spring.

3 THE CUBESAT STANDARD

A broad objective of the CubeSat Program is to
learn which attributes of a spacecraft can be
standardized, and which cannot.  The CubeSat
Design Specification7 is defined based on some
practical requirements, the dimensions of the P-
POD, and a number of safety issues.

3.1.1 General Specifications
Even the most basic spacecraft will need a
computer, some kind of power generation and
storage system, a communication system, and
payload.  A CubeSat is a cube-shaped spacecraft,
measuring 10 cm per side, with a mass of up to
1kg.  It is based on the following considerations.

• The market offers a number of solar
cells about 30 x 70 mm.  CubeSats

should be able to body mount at least
two solar cells per face to generate
enough voltage to support common
microcontrollers (3 to 5 volts).

• A wide variety of cylindrical and
prismatic cell batteries of various
chemistries are available in compatible
sizes.

• Most CubeSats will use amateur radio
frequencies (around 437 MHz) and low
gain antennas.  The CubeSat must
generate and store enough power for
periodic transmissions from low earth
orbit (LEO).

• 1 kg is a convenient number in terms of
defining cost.  Many universities can
afford to launch a 1 kg spacecraft.  The
number of willing and able participants
drops dramatically with even a slight
increase in mass.

Figure 3-1: Excerpt from CubeSat Specification.

3.1.2 Specifications Due to the P-POD
Likewise, some standards were set based on the
shape and size of the P-POD.

• The center of mass of a CubeSat must
be within 2 cm of its geometric center
to minimize spin rates produced during
deployment.

• The location of access ports on the P-
POD determines areas on the CubeSats
that can be used for diagnostic ports
and remove before flight (RBF) pins.

• CubeSat rails should be smooth, flat,
and hard anodized to prevent cold
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welding due to the launch environment
and minimize friction while deploying.

• Thermal expansion of the CubeSat
should be similar to that of aluminum
7075-T73 (P-POD material).

• Tolerances in the specification are
based on P-POD materials, dimensions
and tolerances.

3.1.3 Specifications Due to Safety
A major benefit of the P-POD is that it allows
CubeSat developers to take risks without
endangering the LV or primary payload.  A
number of safety features are required on all
CubeSats to minimize risk to other CubeSats.

• Incorporated separation springs ensure
timely separation between CubeSats.

• At least one deployment switch must
physically disable the electronic systems
of the spacecraft while depressed (when
inside the P-POD).

• A delay of several minutes must be
implemented before deployment or
activation of any antennas, booms, or
transmitters.

• A RBF pin is required to keep the
CubeSats inactive during integration.

Finally, the most important aspect of the
CubeSat Specification Document is its
maintenance by an objective third party.  This
detachment is essential to successfully enforcing
the standard and meeting launch provider
requirements.

4 LAUNCHING CUBESATS

In the CubeSat Program, everything is
considered a component of a larger system.
Understanding the interactions between these
systems is crucial to flying secondary payloads.

4.1 Testing Philosophy
A “test as you fly” approach is used throughout
the CubeSat Program.  Integrated tests are
performed to identify any problems caused by
unknown interactions between specific
CubeSats, and between those CubeSats and the
P-POD.

The P-POD itself is designed to withstand very
harsh environmental conditions.  However, in

the event of a failure of one or more CubeSats,
the P-POD must protect the primary payload
and launch vehicle.  Therefore, even flight P-
PODs are tested above and beyond LP
requirements.

Design level testing, following any modification
or addition to the P-POD, is much more
stringent.  Since dynamic loading due to
vibration is the biggest concern, multiple P-
POD engineering models have been successfully
tested to random vibration levels of 14.1 Grms
for 10 minutes per axis, compared to 1 minute
per axis required by NASA GEVS8

documentation.  P-PODs are also designed to
operate between -45°C and +65°C.
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Figure 4-1: Various random vibration profiles.

CubeSat developers can choose to design and
test to elevated environmental conditions as
well.  This qualifies a developer’s CubeSat for
any launch opportunity with equivalent, or more
lenient, requirements.  CubeSat developers are
urged to think of their spacecraft as one
component in a larger family of systems.  The
quality of their work can have tremendous
impact on other CubeSats as well as the success
of the mission.

4.2 Advantages of Repetition
Once the P-POD and interface have been flight
proven, minimal work is required for
subsequent launches on the same LV.  This
strategy eliminates a large portion of mission
specific design, analysis, and testing.
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Figure 4-2: Integrated P-PODs (Dnepr mission).

As the CubeSat Program evolves, it is feasible to
develop a catalog of prequalified P-POD/LV
interfaces.  The large number of developers
worldwide creates the necessity for frequent
launches.  This means flight heritage can be
established quickly, since every mission provides
more experience with the same system, and
most missions require multiple P-PODs.
Additionally, P-POD components can be
ordered in large quantities, and therefore, with
quantity discounts.  Eventually, the early stages
of a CubeSat mission might be:

1. Assemble a group of nearly completed
CubeSats

2. Conduct a survey of near-term launch
opportunities

3. Choose a preexisting P-POD/LV
interface

4. Begin negotiating secondary payload
accommodations with the LP

4.3 Multiplexing Spacecraft
Without sacrificing robustness, the P-POD has
been carefully optimized for mass.  One empty
P-POD for the Dnepr 04-05 mission has a mass
of 2.5 kg, and carries a 3 kg payload.

If a P-POD was designed for one CubeSat, its
mass would roughly be 1.75 kg.  Combining
multiple CubeSats into one P-POD increases
risk for CubeSats, but decreases the total mass
of the deployment system by over 50%.  Also,
each developer is now only paying for one third
of a very expensive release mechanism.

Figure 4-3: Group of 6 CubeSats and 2 P-PODs.

Due to cost and the large number of developers
looking for access to space, it became apparent
that three CubeSats per mission would not be
efficient.  However, with a dozen or so
participants, total mission launch costs of half a
million dollars become manageable for
university projects.  Launch costs to the
developer include

• Cost to launch 1 kg of CubeSat
• Cost to launch 1/3 mass of the P-POD
• P-POD and LV interface development,

manufacturing, and testing
• Licensing and administrative costs

4.4 Building Block Approach
At one point, the P-POD endured many design
iterations to increase capacity to more than
three CubeSats.  The result was, instead, to
mount multiple P-PODs in small clusters.  This
way, groups of CubeSats can easily be added to
or removed from a mission as necessary.  Risk is
also mitigated in this way, since a malfunction of
one P-POD does not mean a failure for the
entire mission.

Figure 4-4: Interface for SAM and ESPA.
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Additional hardware is required to group P-
PODs in this way.  Usually, this additional
hardware is also the interface between the LV
and P-PODs.  Available secondary payload
envelopes and mass requirements determine the
number of P-PODs per cluster.

Sometimes one cluster of P-PODs does not
provide the required capability.  In this case,
multiple clusters can be mounted to the launch
vehicle.  The final package – composed of
CubeSats, P-PODs, and P-POD clusters – is
then delivered to the launch provider.  The goal
is to make intermediary systems transparent to
the LP so that the delivered hardware can be
treated as a single, non-separating payload.

Figure 4-5: Delta II secondary accommodations.

5 THE RESULTS

In June 2003, a Rockot launch vehicle (LV)
launched one commercial and 5 university
CubeSats into orbit from Plesetsk, Russia.  A
second CubeSat launch, scheduled for the
summer of 2005, will place 14 CubeSats into
orbit using a Dnepr LV and five P-PODs.
Concurrently, a third launch is planned to
accommodate six P-PODs in December 2005.
After only three missions, there will be more
than 30 CubeSats in low earth orbit.  Based on
current capabilities, the CubeSat community can
easily sustain one or more launches per year,
with multiple P-PODs on every mission.

Around 600 students currently participate in
CubeSat projects worldwide.  As a result, there
is a large community of developers working to
solve similar problems. Students can learn from

others’ past experiences and pose questions in
an open forum.

Since few S-class parts fit into a 10 cm cube,
CubeSats use a wide variety of COTS
components, due to their size, cost, and short
lead times.  Consequently, a number of “ad
hoc” standards are emerging within the CubeSat
community.  Laptop and cellular phone parts
are very popular, and many developers choose
to use COTS components that have shown
success and reliability on other CubeSat
missions (Pic™ processors, Lithium Polymer
batteries, etc.)

Additionally, CubeSat developers are likely to
have internal standards.  Often, developers use
identical or similar components and systems on
multiple missions.  A number of developers
design their spacecraft bus generic enough to
support a wide variety of payloads.

By participating in a launch coordinated by Cal
Poly, developers can focus on design and
development rather than interfacing with the
launch provider.  The level of handholding
required between LPs and universities with little
or no space experience, greatly increases
integration time and costs.

To alleviate these issues, Cal Poly acts as a
launch coordinator, working with developers to
solve problems without stealing precious time
from the launch provider.  As a result, the LP
interacts with one organization and one piece of
hardware.  The process is fairly transparent to
both the CubeSat developers and the launch
provider.

6 CONCLUSION

With a single launch of two P-PODs and six
CubeSats (three of which were successful), the
quantity of CubeSat launches and operational
successes is small.

Even with such small numbers, some claim that
CubeSats have already proven themselves as
disruptive technology9.  In the six year history of
the CubeSat Program, a standard has been
defined, has gained widespread recognition, and
has been adopted by over 40 organizations
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worldwide.  Through standardization, launch
costs have been reduced, and mission life cycle
has been accelerated to acceptable levels for
university projects.

With some experience behind us, and some
opportunities quickly approaching, the CubeSat
Program is in a position to offer low cost access,
to space to a large customer base at regular
intervals.  Because of its low cost, rapid mission
life cycles, and flexibility10, the CubeSat Program
has shown significant success as a responsive
space program.
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