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ABSTRACT 
 
For the 2001 SUNFEST Research Program I am using sensor fusion of GPS, and rate 
gyroscope systems to automate the flight control and measure the dynamics of a 30 foot 
unmanned blimp.  This project is parented by Professor James Ostrowski of the 
University of Pennsylvania GRASP Lab. 
 
Using an onboard computer, a Garmin GPS36 GPS sensor, a pair of rate gyroscopes with 
supporting hardware, I developed a custom operating system in Java as well as sensor 
integration software for this operating system.  I have developed a system to measure 
blimp dynamics while it flies and created a set of mathematical models to describe the 
blimp.   
 
This project is sponsored by the National Science Foundation, the University of 
Pennsylvania School of Engineering and Applied Sciences, the University of 
Pennsylvania Science and Technology Wing living-learning program, and the University 
of Pennsylvania College House System. 
 
1. Description of the project: 
 
1.1 Definitions and Mathematical Model Characteristics 

 
The Blimp Project is designed to automate the flight control of an unmanned 30-foot 
airship in order to provide a stable sensors platform for further research.  Because of the 
size of our blimp – too large to be an indoor-only electric blimp and too large to be a 
person-carrying dirigible with powerful wind fighting engines – designing a system to 
maintain the vehicle’s stability outdoors throughout varying winds is rather difficult. 

 
The first step of designing our system was to create a model that accurately reflects the 
characteristics of the blimp.  In order to limit our Euler-Cauchy equations to manageable 
dimensions we decided to eliminate roll as a factor that would require feedback for 
control.  Utilizing a blimp-fixed coordinate system, the X-axis is motion in the forward 
direction of the blimp, the Y-axis is motion perpendicular to the sides of the blimp and 
parallel to the engine arms, and the Z-axis is motion perpendicular to the blimp and the 
engine arms. 
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Pitch is defined as rotation around the Y-axis, and yaw is rotation about the Z-axis.  Roll, 
which is rotation about the X-axis, is negated. 

 
Various factors contribute to the changes in pitch and yaw on our blimp.  The engines 
contribute a torque tending to pitch our blimp, because of the thrust being placed off the 
center of gravity.  The buoyancy, being a force always pointing upward, contributes a 
restorative force that limits the engine pitching moment - the more buoyant our blimp the 
less the engines contribute to the pitch. 

 
Another primary source of torques comes from the control surfaces.  The rudders provide 
a yawing moment that is used to rotate the blimp along the Z-axis.  The elevators 
contribute to the pitch by providing a moment at the tail of the blimp. 

 
Drag is a significant but secondary source of torque on our blimp.  The drag due to air 
crashing into the surface of our blimp causes a pitching moment.  In a head wind drag 
contributes to the moment caused by the engines, and in a tail wind drag helps to negate 
the torque of the engines.  Again this is due to the fact that the surface area the blimp 
presents to the wind is above the center of gravity of our system.  Cross-winds (winds 
perpendicular to the long section of the blimp) are estimated to fall uniformly on the side 
of the blimp and therefore do not produce a yaw moment. 

 
Other forces acting on our system are virtual mass terms: forces resulting from the fact 
that the blimp has to displace the air during flight, and gravity.  Our blimp is 5 lb heavier 
than air in order to conform to FAA regulations of a model aircraft. 
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1.1.1 Blimp Equations 
 

Engine Thrust: 
 
Our 2-horsepower Zenoah G-23 Gasoline Engines each have a three bladed 13-inch 
propeller with a 10-degree pitch.  This configuration with these engines gives us a 
maximum thrust of approximately 102 ounces per engine.  By estimating our thrust 
control on a linear scale it is possible to determine the specific thrust force produced by 
the engines.  The engine speeds are well matched so roll created by differing propeller 
RPM can be negated.  (The blimp can vector thrust only by rotating the engines along the 
Y-axis, not by changing the engine throttles independently.) 
 
The engine thrusts in the {X, Y, Z} directions converted to the earth-fixed plane are 
given by: 
 
  Xthrust = magnitude * cos(engine_pitch + pitch) * cos(yaw) 
  Ythrust = magnitude * cos(engine_pitch + pitch) * sin(yaw) 
  Zthrust = magnitude * sin(engine_pitch + pitch) 
 
  This is given in the Euler-Cauchy matrix 
 
Drag: 
 
Drag is modeled in linear terms.  The first step is to take the projection of the current 
wind vector (which is assumed to be uniform along the entire blimp surface) onto the 
velocity vector of the blimp.  This is achieved by converting the velocity vector into 
spherical coordinates and replacing the magnitude with the normalized dot product of the 
wind and velocity vectors.  Note that the velocity vector here is not the earth-spaced 
velocity vector but the blimp-fixed velocity vector. 
 
Once a projected wind vector is available we use a linear drag model.  The drag along the 
blimp-fixed {X, Y, Z} system is found by 
 
  Xdrag = area_circle * (wind_velocity-velocity) 
  Ydrag = area_ellipse * (wind_velocity-velocity) 
  Zdrag = area_ellipse * (wind_velocity-velocity) 
 
Area_circle and area_ellipse are the cross sectional surface areas of the blimp along the X 
and Y-axes, respectively. 
 
Control Surfaces: 
 
The blimp control surfaces consist of approximately 1 square meter of rudder surface 
area and 1 square meter of elevator surface area.  In order to model the control surfaces 
we sum the wind and velocity contributions of the linear drag on the surface.  In essence 
we project the wind onto the control surface’s “directional pointing vector” and sum that 
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with the projection of the velocity onto the “directional pointing vector.”  This value, 
multiplied by the surface area of the blimp, produces the elevator and rudder moments. 
 
Positional Error 

 
The blimp’s gyroscopes and GPS system provide us with the positional as well as pitch, 
yaw, and velocity data for our blimp.  Since these systems are prone to drift and error 
random errors that approximate those found in our blimp are introduced into our values.  
For pitch and yaw this means a +/- 2 degree error is inserted the first minute of flight time 
and .05 degrees every minute after that.  For GPS we add +/- 15 meters every minute to 
estimate the error.  This error is bounded to +/- 15 which is the published accuracy of our 
GPS system. 
 
1.2 Physical blimp data. 

 
The blimp has two major parts: the envelope and the gondola.  The envelope is 
constructed of an inner PVC bladder with an outer shell of rip-stop nylon.  The gondola is 
constructed of ABS molded plastic with aluminum supports for the engines and servos. 

 
Envelope Mass: 14.651 kg 
Envelope length is 9.144 meters. 
Envelope diameter is 2.134 meters. 
 
Gondola Mass: 8.233 kg 
Gondola length is .853 meters 
Gondola width is .254 meters. 
 

1.616 * 2 kg is due to the engines.  Gondola mass varies as gasoline is consumed so the 
gondola mass can vary +/- 1.5 kg. 

 
Estimating the gondola as a square block, since the engine arm lengths are 
negligible when compared to the envelope, the gondola’s moment of inertia is 
found by: 

 
222 543.233.8*)254.853(.*

12
1 kgmkgmm =+  

 
Estimating the envelope as a hollow shelled cylinder we get the moment of inertia 
being: 
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Summing these using the parallel axis theorem we get: 
 

2
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The blimp flies with approximately 4 to 5 kg of payload. 
 
2. Implementation of the Mathematical Model 

 
The mathematical model of the blimp was implemented in Java.  This required 
programming various vector functionality for cross and dot products as well as 
transformations from earth-spaced to blimp-spaced coordinates. 

 
Another model built in Matlab was implemented utilizing rudimentary virtual mass 
calculations, but the details are still incomplete as of this writing.  It uses the Runge-
Kutta integration method to step through time slices  

 
3. BlimpOS – The Blimp Operating System 
 
3.1 Overview of BlimpOS 
 
The Blimp Operating System is a multitasking, multithreaded operating system written in 
Java that runs in almost any Java environment.  It provides process security and priority 
levels, scheduling, and message passing services to its hosts.  The operating system 
ensures that processes get adequate time to run as well as preventing errant processes 
from freezing up mission critical functions.  BlimpOS will prevent a rogue program from 
taking control of the blimp servos, or stealing time away from the navigation system.  
Currently our BlimpOS runs using the Java JDK 1.3.1 on top of Microsoft Windows 
2000 Professional. 
 
Scott Currie – a senior at the University of Pennsylvania and a Blimp Team member – 
wrote the Original BlimpOS.  Because the original OS was written quickly as a proof of 
concept, the continuation of the project required significant changes to the operating 
system.  These changes will be noted throughout this paper. 
 
3.2 BlimpOS Definitions and blimp.cfg configuration file: 
 
Process – A Java class that extends the class Process.  Processes have to implement the 
boot(), setNewInputStream(), setNewOutputStream() and shutdown() methods.  The 
kernel starts a process by invoking its boot() method. 
 
Properties Manager – A class designed to handle properties passed from blimp.cfg.  
The properties in question are kernel options, process options, and security options.  The 
first version of the operating system had simple properties that could be passed from the 
blimp.cfg to the kernel; my subsequent updates now allow processes to have read access 
to their own configuration information and access to the configuration information of 



 60

other trusted processes.  Currently we are working on breaking up the configuration files 
into a dynamic loading system that will allow processes to be inserted and deleted 
without restarting. 
 
Kernel – The main process that starts all the other processes and runs the scheduler and 
notifier. 
 
Notifier – This process is called to put the kernel to sleep while another process runs, and 
then preempts the other process in order to schedule a new one after a set quantum of 
time.  Since each process runs for a set quantum we consider this a cooperative 
multitasking operating system. 
 
blimp.cfg is the main configuration file for the blimp operating system.  This file 
maintains which processes are to be loaded at runtime as well as preferences and security 
options for the programs.  The blimp.cfg file specifies which processes have 
communications permission as well as priorities and logging options. 
 
3.3 BlimpOS Kernel and Scheduler 
 
The Kernel and Scheduler are the cores of the operating system.  In BlimpOS the Kernel 
has three major tasks: 
 

1. Start processes as provided in the configuration file. 
2. Initiate communications between processes and checking security to determine 

whether one process has permission to communicate to another. The kernel will 
create a link between two processes that each process can use to send data to other 
processes. 

3. Forces preemption - Since the Java Scheduler has some significant flaws we 
needed to write our own process scheduler to fix the problems. 

 
The kernel provides for a system to link two processes together, but the initial version of 
the OS allowed only one listener and one receiver per process using blocking I/O.  The 
updated version allows for multiple listeners and a non-blocking Queue I/O, which 
allows a process to post events and other processes to listen for incoming events. 
 
Another function of the kernel is to process the kernel complaint stream tied to each 
process.  Each process can use its request stream to request a communications link with 
other processes, request more processor time, or even request access to hardware.  I am 
currently working on adding a security model to prevent processes from attempting to 
access hardware on their own. 
 
The scheduler provides a facility to run through the list of processes and select the next 
one, based on priority, to run.  The system ensures that each process runs and that 
processes get the priority they need.  The priority system was repaired and the system 
was upgraded to be more robust.  The initial version of the operating system could not 
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handle a process that shut itself down, but now processes can dynamically die and be 
restarted without having to notify the scheduler. 
 
3.4 Stream Connections 
 
The BlimpOS allows for communications between processes through streams.  These 
streams are either ObjectOutput Streams or of any other stream type that the two 
processes negotiate prior to compilation.  To request a connection stream a process 
creates a new StreamRequest object, passing a stream title, destination process name, and 
stream type.  The Kernel then checks permissions by looking in blimp.cfg and either 
calling the setNewOutputStream() of the requestor and setNewInputStream() of the caller 
or otherwise ignoring the request. 
 
The extension of the process class now contains a specialized event queue.  The event 
queue is created knowing its owner process – since two processes classes cannot have the 
same name this is allowable.  The queue then allows only the calling process to insert 
elements into the queue, and sends out a pointer to any class that sends out a 
ListenerRequest to listen to a process.  In this fashion we can efficiently implement a 
method for making a process distribute fresh data.  The creating process specifies the 
queue length and only the newest items are kept in memory.  This is useful for GPS data, 
since if your process stalls for a bit and misses some GPS data events your process won’t 
play catch-up.   
 
Future goals for this aspect of the project are to implement a better device security model 
and to achieve real time hardware access and performance throttling.  The current 
security model allows any process to access any Java available hardware with only minor 
configuration file support.  This will hopefully be combined into a system where the 
Kernel locks all devices and can lease them out to other processes, revoking their control 
as necessary.  A function such as this would be useful in cases where a third party wants 
to test a new control system on the blimp.  In this case we would have backups for 
emergency computer control.  Real-time hardware access and performance throttling are 
necessary to achieving overall computer system stability.  Currently our OS has the 
tendency to starve its host OS making certain processing, like real time video streaming, 
difficult. 
 
4. Blimp Gondola Modifications and Control Surface Construction 
 
4.1 Introduction and Details 
 
The construction of the blimp’s control surfaces happens on a regular basis.  We 
reconstruct the fins in order to repair wood damage from flight stresses and small 
accidents.  Dragging against a floor or ceiling as well as brushing by trees can damage 
the rudders and elevators.  The elevators and rudders are constructed of balsa wood and 
have an approximate surface area of .7m^2 of elevator; and .7m^2 of rudder. 
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The gondola is constructed of molded plastic.  Because of all of the other supporting 
hardware - engine servos, gasoline tanks, and radio hardware – its shape and size is 
inefficient for carrying our extra electronic payload.  Therefore we constructed a small 
electronics package that mounts to the gondola. 
 
4.2 Shielded Electronics Pod 
 
As a result of the high broadband radio noise produced by our blimp engines, especially 
when they first start, the long cable lengths act as an excellent antenna.  This has the 
horrendous effect of rebooting our computer and can cause our gyroscope readings to 
skew.  (More details are provided in section 6.)  In order to shield the laptop and cables as 
well as provide a mounting space for our electronics, we created a miniature electronics 
pod.  Approximately half the size of the gondola it mounts underneath, the miniature pod 
is attached through dowel rods that slide into retainer holes and are secured with friction 
and cotter pins. 

 

 
 
The miniature pod is constructed of a Tupperware container approximately 16 inches 
long by 9 inches wide by 6 inches deep.  Most of the container is drilled away, leaving a 
cross connected rib and an outer rim.  For strength we shrink-wrapped the pod in Mylar, 
which provides a relatively strong body that is electrically conductive.  Mylar’s poor 
conductivity makes it a poor RF shield.  In order to aid its shielding capabilities we put 
on many layers of film and wrapped some outer layers in thin copper wire.  The pod 
connects to the engines as a ground to assist in shielding out engine RF noise.  Balsa 
wood reinforcements are placed on key stress points in the pod. 
 
Thanks to the light construction the pod weighs only ½ lb. Its RF shielding capabilities 
are rather small but good enough for protecting the laptop, which wouldn’t operate prior 
to shielding. Another step we took to protect our electronics was to replace the spark 
plugs with resistive spark plugs.  Resistive spark plugs have a resistor in parallel with the 
plug, reducing RF emissions. Luckily our shielding only slightly attenuates wireless 
Ethernet. (802.11b). 
 
Future tasks for this pod involve using a shielding cloth instead of Mylar.  Besides being 
a better shielding material it could be significantly stronger and conduct heat better.  
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Mylar contains most of the heat inside of the pod, quickly heating all of our electronics.  
Inclusion of a small 12-volt fan may help this situation. 
 
5. Feedback Sensors 
 
5.1 GPS System 
 
The GPS system is a Garmin GPS36. The GPS36 can take any input voltage from +6 to 
+30 V and has two serial inputs and one serial output. The inputs are used to program the 
device via NMEA 0183 ASCII Interface Specification and to provide differential 
correction beacon interfacing with an RTCM Recommended Standard for Differential 
Navstar GPS Service, Version 2.0, RTCM Special Committee No 104. 
 
The outputs are NMEA 0183 Version 2.0 Standard Outputs with a few Garmin 
extensions. The exact specification is listed on Garmin’s website: 
http://www.garmin.com. 
 
The GPS currently runs off a 9V battery, which because of the low energy density of the 
batteries gets us approximately 1 hour of battery life.  We are planning to introduce an 
onboard 12V electronics bus to power all the electronics and supplement the laptop’s on-
board power. 
 
The GPS is programmed via a Garmin utility prior to runtime to select the specific GPS 
sentences we would like outputted.  The sensor is then hooked into the flight laptop, and 
the operating system GPS module is started.  The GPS module reads the GPS and 
processes the data, redistributing it to any other process that wishes to listen. 
 
Mounting of the GPS is done via a patch of Velcro at the top of the blimp envelope over 
the center of mass.  Despite its distance from the center of mass this is the most 
functional place to mount the GPS so that it has a clear view of satellites. 
 
The GPS accuracy is approximately +/- 5 meters. 
 
5.2 Gyroscope 
 
We have gyroscopes on the blimp interfacing via RS232 to measure the pitch and yaw of 
the blimp.  The mounting of the gyroscopes is crucial to their performance as drift can be 
very noticeable in such a system.  The gyroscope drift is slightly corrected for in the 
system but vibrations still cause errors.  In order to tie the gyroscope as closely to the 
blimp motion as possible, the bulky electronics have been segregated from the actual 
sensor heads, and the sensors themselves are mounted directly to the envelope.  Wire 
length is an issue since any small noise could disrupt our gyroscope reading.  Therefore 
the electronics are also mounted on the envelope just a few centimeters away from the 
reading heads.  This detached method provides for gyroscope heads that do not sway or 
wobble as much as keeping them tied to the bulky electronics would. 
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A student working in the University of Pennsylvania GRASP lab created the gyroscope 
reading hardware.  It’s called the DAX and its documentation is included as Appendix 1. 
 
Problems we are encountering with our DAX are attributed to drift of the gyroscope due 
to engine and wind vibration.  We have solved some of this by creating a strong 
mounting for the two gyroscope heads and by increasing the airship’s turgidity. 
 
5.3 Radio Controller to Computer Interface 
 
Using the RealFlight RC Transmitter Interface-™ we have developed a system that 
transfers RC controls to the parallel port in order to record how specific control inputs 
correlate to changes in the blimp’s dynamics. 

 
6. Numerical Models Through Data Acquisition 
 
Our plans for creating the control system involve first getting some sample control data.  
We have developed a system where we can monitor the radio controller outputs to the 
servo and combine their data with the GPS and Gyroscope data.  Combined, all three 
pieces of information will give us an experimental model for how the blimp operates.  
Our first scheduled set of data collection is scheduled for the end of August. 
 
In order to correlate this data we will first walk the blimp to certain checkpoints, and then 
fly it along a predetermined path to hit those checkpoints.  Once each checkpoint is 
targeted we can evaluate a numerical model and try and to correct for any steady state 
noise.  (I.e. Wind.) 
 
7. Non-Technical Details 
 
The Blimp Project has required a great deal of non-technical, behind-the-scenes work in 
order to keep it alive.  Tasks I have had to deal with over this summer included repair of 
previous blimp damage that required professional tailoring; locating and securing funds 
to continue our insurance policy; fundraising; and organizing manpower to hold flight 
tests.  This project required a small business management attitude – something that 
occasionally held research in limbo. 
 
This summer I have secured some more funding for our project as well as a full year of 
insurance.  I have organized trips to Carnegie Mellon University for flight-testing as well 
as oversaw the repair and maintenance of the blimp. 
 
8. Why the blimp is not electric. 
 
The blimp runs on its standard Gasoline engines because going to electric engines would 
require huge amounts of batteries that would last us only 9 minutes of flight time.  The 
large power output required of the blimp as well as the fact that we need positive thrust in 
order to just hover, means that electric engines equivalent to our gasoline engines would 
have to provide approximately 1400 Kilowatts each!  This is impractical and until we can 
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get higher energy densities (i.e. fuel cells) onboard an electric blimp of this size is not 
likely. 
 
We have explored many options – i.e. powering from the ground, etc.  Unfortunately 
powering the blimp from the ground would not only severely limit its mobility but also 
blow out the motor speed controller due to wire inductance. 
 
9. Discussion and Conclusions 
 
All in all the Blimp Project was a successful attempt at modeling the dynamics and 
integrating a sensors package into our model airship.  We have successfully created 
multiple models for use in mathematical simulations, mounted sensors to the blimp, 
created radio noise shielding, redesigned and redeveloped an operating system for the 
operation of the blimp, developed software for interfacing our sensors and radio control 
transmitter into the operating system, and managed the project’s business details to keep 
it funded and insured. 
 
The completion of the feedback laws and automation system is an ongoing project that 
will continue through and beyond the writing of this paper.  Very soon we will have 
started to prototype a control system designed to stabilize the blimp and pilot it through 
3-space.  Further refinement of the mathematical model will happen as part of this project 
in September, and we will have more information on our numerical model by then also. 
 
10. Recommendations 
 
This is an ongoing project that is still continuing past the sponsored SUNFEST NSF-
REU time.  Being a University of Pennsylvania student I have the privilege of continuing 
my work throughout the year.  I can recommend only that work continue on the 
refinement of the mathematical model and feedback loops as a higher priority now that 
the sensor mounting is completed and integrated. 
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